Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400097, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572522

RESUMEN

Plant chloroplasts have a highly compartmentalized interior, essential for executing photocatalytic functions. However, the construction of a photocatalytic reaction compartment similar to chloroplasts in inorganic-biological hybrid systems (IBS) has not been reported. Drawing inspiration from the compartmentalized chloroplast and the phenomenon of liquid-liquid phase separation, herein, a new strategy is first developed for constructing a photocatalytic subcellular hybrid system through liquid-liquid phase separation technology in living cells. Photosensitizers and in vivo expressed hydrogenases are designed to coassemble within the cell to create subcellular compartments for synergetic photocatalysis. This compartmentalization facilitates efficient electron transfer and light energy utilization, resulting in highly effective H2 production. The subcellular compartments hybrid system (HM/IBSCS) exhibits a nearly 87-fold increase in H2 production compared to the bare bacteria/hybrid system. Furthermore, the intracellular compartments of the photocatalytic reactor enhance the system's stability obviously, with the bacteria maintaining approximately 81% of their H2 production activity even after undergoing five cycles of photocatalytic hydrogen production. The research brings forward visionary prospects for the field of semi-artificial photosynthesis, offering new possibilities for advancements in areas such as renewable energy, biomanufacturing, and genetic engineering.

2.
J Mater Chem B ; 12(10): 2587-2593, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38363549

RESUMEN

Due to increasing bacterial resistance to disinfectants, there is an urgent need for new therapeutic agents and strategies to effectively inhibit bacteria. Accordingly, we have designed and synthesized a novel crown ether known as C7Te, and its oxidized form C7TeO. These compounds have demonstrated antibacterial effectiveness against Gram-negative E. coli (BL21). Notably, C7Te has the capability to enhance the inhibition of E. coli and the prevention of biofilm formation by H2O2 through a redox response. It can also effectively disrupt preformed E. coli biofilms by penetrating biofilm barriers effectively. Additionally, computer modeling of the bacterial cell membrane using nanodiscs composed of phospholipids and encircled amphipathic proteins with helical belts has revealed that C7Te can insert into and interact with phospholipids and proteins. This interaction results in the disruption of the bacterial cell membrane leading to bacterial cell death. The utilization of redox-responsive crown ethers to augment the antibacterial capabilities of H2O2-based disinfectants represents a novel approach to supramolecular bacterial inhibition.


Asunto(s)
Éteres Corona , Desinfectantes , Escherichia coli , Éteres Corona/farmacología , Peróxido de Hidrógeno/farmacología , Antibacterianos/farmacología , Bacterias , Oxidación-Reducción , Desinfectantes/farmacología
3.
Int J Biol Macromol ; 261(Pt 2): 129819, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290631

RESUMEN

Protein self-assembly can be accurately manipulated to form ordered nanostructures through various supramolecular forces. This strategy is expected to make significant breakthroughs in the field of new biomimetic functional materials. Specifically, the construction of photocatalytic systems on two-dimensional (2D) flexible protein nanosheets meets a great challenge. We introduce a synthetic methodology for creating single-layer semiconductor-decorated protein 2D materials under mild conditions with enhanced light-driven hydrogen production. This approach employs a bioengineered green fluorescent protein (E4P) with the addition of a Cd-binding peptide, enabling precise control of the assembly of CdS quantum dots (QDs) on the protein's surface. Consequently, we obtained 4.3 nm-thin single-layer 2D protein nanosheets with substantial surface areas ideal for accommodating CdS QDs. By orthogonal incorporation of metal-binding peptides and supramolecular coordination, significantly enhancing the overall photocatalytic efficiency. Our findings demonstrate the potential for stable and efficient hydrogen production, highlighting the adaptability and biocompatibility of protein scaffolds for photocatalysis.


Asunto(s)
Materiales Biomiméticos , Puntos Cuánticos , Semiconductores , Ingeniería Biomédica , Hidrógeno
4.
Front Chem ; 11: 1119240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742036

RESUMEN

This mini-review summarizes the seminal exploration of aqueous supramolecular chemistry of crown ether macrocycles. In history, most research of crown ethers were focusing on their supramolecular chemistry in organic phase or in gas phase. In sharp contrast, the recent research evidently reveal that crown ethers are very suitable for studying abroad range of the properties and applications of water interactions, from: high water-solubility, control of Hofmeister series, "structural water", and supramolecular adhesives. Key studies revealing more details about the properties of water and aqueous solutions are highlighted.

5.
Pharmaceutics ; 14(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36559102

RESUMEN

Nanoparticles (NPs) have been widely used as target delivery vehicles for therapeutic goods; however, compared with inorganic and organic nanomaterials, protein nanomaterials have better biocompatibility and can self-assemble into highly ordered cage-like structures, which are more favorable for applications in targeted drug delivery. In this review, we concentrate on the typical protein cage nanoparticles drugs encapsulation processes, such as drug fusion expression, diffusion, electrostatic contact, covalent binding, and protein cage disassembly/recombination. The usage of protein cage nanoparticles in biomedicine is also briefly discussed. These materials can be utilized to transport small molecules, peptides, siRNA, and other medications for anti-tumor, contrast, etc.

6.
J Immunol Res ; 2022: 6137219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35942210

RESUMEN

This work is aimed at exploring the mechanism of inflammatory factors and soluble vascular cell adhesion molecule-1 (sVCAM-1) regulated by nuclear transcription factor-κB (NF-κB) in unstable angina pectoris (UAP). 60 patients with unstable angina pectoris (UAP), 60 patients with stable angina pectoris (SAP), and some healthy people (controls) were selected and included. Peripheral venous blood (PVB) of all subjects was collected to detect blood routine. The enzyme-linked immunosorbent assay (ELISA) was adopted for detecting Visfatin, sVCAM-1, soluble intervascular cell adhesion molecule-1 (sICAM-1), and inflammatory factors; flow cytometry (FCM) was to detect the CD63 and CD62P; real-time fluorescence quantitative polymerase chain reaction (rt-qPCR) was employed to detect the NF-κB1, NF-κB2, and REL mRNA. The hs-CRP results of UAP group, SAP group, and control group were 11.12 ± 1.5 mg/L, 10.23 ± 1.3 mg/L, and 4.51 ± 1.1 mg/L, respectively. The CD62P results of UAP group, SAP group, and control group were 16.07 ± 2.5%, 11.09 ± 1.8%, and 22.15 ± 0.4%, respectively. The high-sensitivity C-reactive protein (hs-CRP), inflammatory factors (IL-6, IL-17, IL-23, IL-1ß, and tumor necrosis factor α (TNF-α)), CD63, CD62P, NF-κB1, NF-κB2, and REL mRNA were obviously higher in the SAP group compared than the indicator values in the control group (P < 0.05). The relative REL expression results of UAP group, SAP group, and control group were 3.77 ± 1.5, 2.2 ± 0.6, and 1 ± 0.4, respectively. The inflammatory factors, Visfatin, sVCAM-1, sICAM-1, CD63, CD62P, NF-κB1, NF-κB2, and REL mRNA in the UAP group showed higher levels in contrast to the other two groups (P < 0.05). In summary, UAP patients had marked activation of the IL-23/IL-17 inflammatory axis, high expressions of sVCAM-1 and sICAM-1, and activation of the NF-κB pathway. Increase of inflammatory factors and sVCAM-1 regulated by NF-κB was closely correlated with UAP.


Asunto(s)
FN-kappa B , Nicotinamida Fosforribosiltransferasa , Angina Inestable/metabolismo , Proteína C-Reactiva/metabolismo , Humanos , Interleucina-17/metabolismo , Interleucina-23/metabolismo , FN-kappa B/metabolismo , Subunidad p52 de NF-kappa B , Nicotinamida Fosforribosiltransferasa/metabolismo , ARN Mensajero , Molécula 1 de Adhesión Celular Vascular/metabolismo
7.
J Hazard Mater ; 440: 129730, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027749

RESUMEN

Water is generally considered to be an undesirable substance in fuel system, which may lead to microbial contamination. The antibacterial strategies that can turn water into things of value with high disinfection efficacy have been urgently needed for fuel system. Here, we reveal a water-fueled autocatalytic bactericidal pathway comprised by bi-metal micro-electrode system, which can spontaneously produce reactive oxygen species (mainly H2O2 and O2•-) by the electron Fenton-like reaction in water medium without external energy., The respiratory chain component of bacteria and the galvanic corrosion on the coated metals were two electron sources in the system. The specific model of Ag-Ru water-fueled autocatalytic (WFA) microelectrode particles presents extremely high disinfection efficiency (>99.9999%) in less than one hour for three aerobic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis) in LB media and high disinfection efficiency for the anaerobic bacteria (Desulfovibrio alaskensis) in Postgate E media without natural light irradiation. Overall, the novel WFA Ag-Ru antibacterial material explored in this study has a high potential for sterilizing applications in fuel system and this work provides the potential for the development of non-chemical and water-based antibacterial materials, such as WFA Ag-Ru antibacterial coating on stainless steel.


Asunto(s)
Peróxido de Hidrógeno , Agua , Antibacterianos/química , Corrosión , Transporte de Electrón , Electrones , Escherichia coli/efectos de la radiación , Especies Reactivas de Oxígeno , Acero Inoxidable , Agua/química
8.
J Phys Chem Lett ; 12(31): 7418-7422, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34330157

RESUMEN

Supramolecular assemblies based on oligo(ethylene glycol) (OEG) building blocks are well-known for their neutral chemical property and thermal-responsive behavior. Here, the cyclic "CLOSED" and linear "OPEN" typologies of OEGs led to dramatic difference in the sensitivity to guanidinium-containing species. From thermodynamic studies, the association constant (Ka) between the "CLOSED" form amphiphile and guanidinium salt was determined to be 28.7 M-1, whereas there was no detectable binding affinity for the "OPEN" form. Therefore, considering ion specificity, the present results establish that crown ether derivatives with "CLOSED" and "OPEN" topologies provide an easy-to-access model pair with designed ion-recognition sites and special functional moieties and geometries (like the binding pockets of enzymes or ion channels in cellular members) that allow the manipulation of the intercrossed relationship between supramolecular solutes, waters, and guanidinium salts. These supramolecular forces in aqueous solution offered an alternative strategy to fabricate thermal-responsive systems in ionic medium.

9.
Dalton Trans ; 50(1): 262-269, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33295909

RESUMEN

The anion-adaptive self-assembly described here not only offers a facile approach to produce large single-molecule magnets without the need for precise manipulation of the stoichiometry of ligand-metal centers but also provides an understanding of how structural factors affect the magnetic properties. X-ray diffraction analysis reveals that a rare hexagonal metallacycle with a diameter approaching 23 Å was obtained. Magnetic investigation shows that the resulting hexagonal metallacycle behaves as a typical single-molecule magnet with double relaxation under dc field thanks to the different coordination geometry of the DyIII centers.

10.
J Org Chem ; 86(2): 1430-1436, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33370530

RESUMEN

Organic selenides are famous for their coordination and catalytic functions in the organic phase, albeit challenging for aqueous medium. Herein, the combination of a hydrophilic body of crown ether and substitution of one oxygen atom with a selenium one provides a new type of design route for organic selenide entities with charming functions in aqueous solution. The selenacrown ether C9Se presented here intrinsically shows an amphiphile-like property. Its nanosphere structure in water readily expands the catalysis of organic selenide to aqueous substrates in thiol/disulfide conversion.

11.
Chem Commun (Camb) ; 56(95): 15052-15055, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33196719

RESUMEN

A new heterodimeric crown amphiphile was fabricated, wherein the oxacrown and selencrown ethers provided the desired molecular framework for hydrophilicity and hydrophobicity, respectively. From an integrated perspective, the developed amphiphile possesses features of crown ethers, amines, and selenium-containing species, and its assembly in water can be responsive to diverse chemical effectors-H2O2 and CO2 in a switchable ON/OFF mode to achieve controlled release. It is the first case wherein the applications of cyclic polyethers with different solubilities drives the self-assembly in an aqueous medium.

12.
PLoS One ; 15(11): e0241007, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151961

RESUMEN

Kaempferol, a natural flavonoid compound, possesses potent myocardial protective property in ischemia/reperfusion (I/R), but the underlying mechanism is not well understood. The present study was aimed to explore whether miR-21 contributes to the cardioprotective effect of kaempferol on hypoxia/reoxygenation (H/R)-induced H9c2 cell injury via regulating Notch/phosphatase and tensin homologue (PTEN)/Akt signaling pathway. Results revealed that kaempferol obviously attenuates H/R-induced the damages of H9c2 cells as evidence by the up-regulation of cell viability, the down-regulation of lactate dehydrogenase (LDH) activity, the reduction of apoptosis rate and pro-apoptotic protein (Bax) expression, and the increases of anti-apoptotic protein (Bcl-2) expression. In addition, kaempferol enhanced miR-21 level in H9c2 cells exposed to H/R, and inhibition of miR-21 induced by transfection with miR-21 inhibitor significantly blocked the protection of kaempferol against H/R-induced H9c2 cell injury. Furthermore, kaempferol eliminated H/R-induced oxidative stress and inflammatory response as illustrated by the decreases in reactive oxygen species generation and malondialdehyde content, the increases in antioxidant enzyme superoxide dismutase and glutathione peroxidase activities, the decreases in pro-inflammatory cytokines interleukin (IL)-1ß, IL-8 and tumor necrosis factor-alpha levels, and an increase in anti-inflammatory cytokine IL-10 level, while these effects of kaempferol were all reversed by miR-21 inhibitor. Moreover, results elicited that kaempferol remarkably blocks H/R-induced the down-regulation of Notch1 expression, the up-regulation of PTEN expression, and the reduction of P-Akt/Akt, indicating that kaempferol promotes Notch1/PTEN/AKT signaling pathway, and knockdown of Notch1/PTEN/AKT signaling pathway induced by Notch1 siRNA also abolished the protection of kaempferol against H/R-induced the damage of H9c2 cells. Notably, miR-21 inhibitor alleviated the promotion of kaempferol on Notch/PTEN/Akt signaling pathways in H9c2 cells exposed to H/R. Taken together, these above findings suggested thatmiR-21 mediates the protection of kaempferol against H/R-induced H9c2 cell injuryvia promoting Notch/PTEN/Akt signaling pathway.


Asunto(s)
Cardiotónicos/farmacología , Quempferoles/farmacología , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Animales , Línea Celular , Inflamación/prevención & control , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-32733866

RESUMEN

In situ immobilization of enzyme into metal-organic frameworks (MOFs) is performed through a one-step and facile method. Candida antarctica lipase B (CalB) is directly embedded in zeolitic imidazolate framework (ZIF)-8 by simply mixing an aqueous solution of 2-methylimidazole and zinc nitrate hexahydrate [Zn(NO3)2⋅6H2O] containing CalB at room temperature. Due to the intrinsic micropores of ZIF-8, the obtained CalB@ZIF composite is successfully applied in size-selective transesterification reaction in organic solvent. CalB@ZIF not only shows much higher catalytic activity but also exhibits higher thermal stability than free CalB. Besides, the robust ZIF-8 shell also offers the hybrid composites excellent reusability.

14.
J Phys Chem B ; 123(45): 9692-9698, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31617720

RESUMEN

Understanding of aqueous solutions is of significance to a wide range of fields. Crown macrocycles emerge as a new generation of model hosts for studying the chemistry of water and aqueous supramolecular chemistry. Herein, we present the oxacrown ether cyanobenzo-21-crown-7 ether (C7CN), and its selenium-containing counterpart selencrown ether C7SeCN possess only one chalcogen atom diverse in structure but exhibits dramatic difference in shape, solvation (e.g., hydration), and consequent thermodynamics of guest binding experimentally. The hydrogen bond strength of Se···H is similar to that of O···H, but theoretical calculations pointed out that there is a prominent electrostatic potential change for the entire molecule caused by Se substitution, which leads to the decrease of the interactions between water clusters and crown macrocycles thermodynamically and kinetically. Results established that C7CN and C7SeCN provide an easy-to-access model pair to exclusively probe water-solute interaction and host pocket wettability change caused by one atom substitution.

15.
Beilstein J Org Chem ; 15: 1203-1209, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293667

RESUMEN

The synthesis of conjugates of perylene diimide (PDI) and naphthalene diimide (NDI) modified with two benzo-21-crown-7 ethers (B21C7) are herein described. Their self-assembly behavior in various solvents was investigated particularly in aqueous medium, due to the recently discovered hydrophilic properties of B21C7 crown macrocycle. An unexpected fluorescence quenching phenomenon was observed in the PDI-B21C7 macrocycle conjugate in chloroform. The detailed UV-vis absorption and fluorescence spectra of these PDI/NDI derivatives in different solvents as well as their morphologies were investigated.

16.
Langmuir ; 35(24): 7824-7829, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31141380

RESUMEN

A biogenic macrocycle-based guest loading system has been developed by the self-assembly of membrane scaffold protein and phospholipids. The resulting 10 nm level transport system can increase the solubility of hydrophobic photodynamic agent hypocrellin B in aqueous medium and exhibited a cellular internalization capacity with substantial photodynamic activity.

17.
Macromol Rapid Commun ; 40(17): e1800731, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30672634

RESUMEN

A new type of dynamic covalent macrocycle with self-promoted supramolecular gelation behavior is developed. Under oxidative conditions, the dithiol compound containing a diamide alkyl linker with an odd number (7) of carbon chain and an appended crown ether shows a remarkable gelation ability in acetonitrile, without any template molecules. Due to the existence of crown ethers and disulfide bonds, the obtained gel shows a multiple stimuli-responsiveness behavior. The mechanical properties and reversibility of the gel are investigated. Computational modeling suggests that the peripheral chain for diamide hydrogen bonding is responsible for the gelation process.


Asunto(s)
Materiales Biocompatibles/química , Coloides/química , Éteres Corona/química , Geles/química , Compuestos Macrocíclicos/química , Simulación por Computador , Enlace de Hidrógeno , Estructura Molecular
18.
Chemistry ; 25(7): 1716-1721, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30475411

RESUMEN

In cooperative catalysis, the combination of chemo- and biocatalysts to perform one-pot reactions is a powerful tool for the improvement of chemical synthesis. Herein, UiO-66-NH2 was employed to stepwise immobilize Pd nanoparticles (NPs) and Candida antarctica lipase B (CalB) for the fabrication of biohybrid catalysts for cascade reactions. Distinct from traditional materials, UiO-66-NH2 has a robust but tunable structure that can be utilized with a ligand exchange approach to adjust its hydrophobicity, resulting in excellent catalyst dispersity in diverse reaction media. These attractive properties contribute to the formation of MOF-based biohybrid catalysts with high activity and selectivity in the synthesis of benzyl hexanoate from benzaldehyde and ethyl hexanoate. With this proof-of-concept, we reasonably expect that future tailor-made MOFs can combine other catalysts, ranging from chemical to biological catalysts for applications in industry.

19.
RSC Adv ; 9(65): 38195-38199, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35541798

RESUMEN

A protein-based macrocyclic bioactive guest loading system has been developed, which not only provides a stable 10 nm scale lipophilic environment, but also increases the solubility of potent anticancer agent SN38 in its active lactone form in aqueous medium.

20.
Chemistry ; 24(15): 3854-3861, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29314310

RESUMEN

The chemistry of aqueous salt solutions is rich with ambiguities, especially in stimuli-responsive supramolecular systems. Rational use of ion specificity to design supramolecular responsive materials, however, remains a challenging task. In this work, a low-molecular-weight supramolecular system was developed that was used to reveal the underlying systematic relationship between ions, water, and solutes. By utilizing these water-attenuated supramolecular forces (with Ka only ca. 30 m-1 ), an alternative concept for fabricating an aqueous responsive system in ionic medium was demonstrated. This work not only provides mechanistic insight into the underdeveloped role of topology in ion specificity upon noncharged polar surfaces, but also demonstrates the feasibility of utilizing weak supramolecular approaches to control the thermoresponsiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...